The shift towards intelligent, autonomous devices, and the high network speeds available at an increasingly lower prices have led to a slow, but steady convergence of traditionally separate network functions. Voice and security systems were the first ones to make the transition.
But as smart devices — the components of the smart buildings – become increasingly capable, many other systems, from lighting and energy metering to HVAC and elevators, are making the transition to a consolidated structure, where they share the same data network.
This makes the data network critical to exploiting a smart building ecosystem in London – or rather, as we will see, makes the data network the very fabric of a smart building intelligence. Adopting this radically different perspective and implementing it in a durable manner is a challenge to facility and IT managers, engineers and technicians alike. Today, we would like to discuss the main aspects of this paradigm and offer some practical tips for its implementation.
Smart Buildings: An Integrated Ecosystem
What constitutes a smart building? Siemens, one of the leading vendors of smart building solutions, describes smart buildings as starting with “an infrastructure […] based on a robust, open operating system that supports a well-connected and integrated network of building systems and controls”.
Traditionally, facilities such as security, HVAC and lighting systems were separate and largely independent from each other. Smart buildings are what you get when you bring them together: in other words, it’s cross-system integration that puts the “smart” in “smart buildings”.
What’s the role of smart devices? Smart devices, by themselves, are little more than expensive, network-aware versions of their “dumb” counterparts.
It’s their permanent communication that provides value. In order for that to happen, smart devices are not just actionable elements, but also data sources: a smart switch, for example, can not only switch a lighting unit on and off, but also provide state querying, usage statistics, and sometimes even energy readings over the network.
When we speak of “integration”, we are referring to two types, or two levels of integration:
- Physical or infrastructure-level integration, which means that all of a building’s systems – security, HVAC, lighting and so on – are tied to the same communications infrastructure
- Application-level integration, which means that data provided by one system is used by other systems in order to make decisions or optimisations in real-time. For example, data from occupancy sensors can be used to adjust HVAC parameters and lighting levels in a given office area, depending on the time of day and on whether anyone is present or not.
Application-level integration is what makes most of the primary benefits of small buildings possible. Infrastructure-level integration is what makes it possible and cheap, but also has advantages of its own, as we will see immediately.
What systems do smart buildings integrate? The main candidates are the communications, security, monitoring, access, lighting, elevators and HVAC systems. Energy metering, and fire and other emergency services are also integrated to a high degree, but due to legal and security reasons their functionality tends to be less dependent on data communication.
Why are these systems integrated? Integration is both a technical objective and an opportunity in itself. As we will see shortly, large-scale integration has its own benefits in term of cost, both upfront and in the long run. But integration is what enables these separate systems to collaborate and form a larger, more intelligent system, capable of useful decisions. This is what grants smart buildings an increased operational efficiency, lower costs, and greater flexibility for your business.